
TWO-PHASE HEAT TRANSFER IN A ONE-DIMENSIONAL CHANNEL 

Yu. A. Buevich and E. B. Perminov UDC 536.27 

The problems of heat transfer in a flow of continuous medium in a channel filled 
with dispersed material, and of the unsteady operation of a straight-through 
heat regenerator are examined; longitudinal heat transfer is ignored. 

Unsteady heat-transfer ([and also mass-transfer) processes between a flow of working 
fluid and a solid packing filling a channel are of such widespread occurrence in heat engine- 
ering that many investigations of these processes have long become classical, and their 
results have been given in the form of nomograms on several occasions (see, e.g., [1-4] 
and also [5-8]). The mathematics of the problems that arise, even when conductive heat" 
transfer, heat transfer between the channel walls and surroundings, internal heat and mass 
sources, etc. are neglected, and the boundary and initial conditions are formulated in the 
simplest form, is so complex that the obtained solutions are usually difficult to visualize, 
and their analysis requires laborious numerical calculations. Hence, it is desirable to 
simplify the initial formulation of the mathematical problems by using approximate model 
considerations relating to the description of transport processes. 

As was shown in [9, i0], this possibility arises when the characteristic time scale of 
the transport process greatly exceeds the relaxation time characterizing transfer between 
the flow and a single element of the packing. In this case we can convert from a system 
of two equations for the mean temperatures of the fluid and packing to a single approximate 
equation for one of these temperatures. The aim of the present work was to use such an 
equation to analyze some general problems of two-phase heat transfer in a straight channel 
in which heat is lost from the walls. For simplification we neg-lect longitudinal heat con- 
duction and assume that there are no internal heat sources. We also neglect contact heat 
transmission through the structure formed by the packing elements. The grounds for this are 
obvious in the case of granular packings, packings consisting of plates oriented in the 
direction of the flow, etc. 

The initial system of equations in dimensional variables has the form 

"% = ,~.Ar'ro - -  13 ( ' to - -  "tO, 
ax 

( l )  

(I - -  ~) de~  0 ~ = ~ (*o - -  "q), 
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where A r is the part of the Laplace operator containing the operations of differentiation 
with respect to only the transverse coordinates. We assume that the coefficients X and 
in (i) are constant. 

The approximate "equivalent" equation for the mean fluid temperature To is written in 
the form [i0] 

edocoU dTo , [edoco+(l__e)dici] a*o =)~ArTo+(l__e)dici(1--e)dict 02"to (2) 
0---~ -r  Ot ~ Ot z 

Introducing time and length scales in the longitudinal and transverse directions, and 
also the dimensional variables and parameters 

(1 - -  ~) d~c~ ? (1 - -  ~) d~c~u t:o~tT, x = c * ~ X ,  r : ~ r R ,  ~zt= , ~z~:: , 
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we convert Eq. 

edoco E 
a ~ = L ,  ? - -  , A =  

(i - -  ~) d~g 

(2) t o  t h e  form 

OX0% -(" aTOt~ __ AARx ~ q_ aT 202% 
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A necessary and sufficient condition for applicability of this equation is fulfilment of the 
inequality T ~ i, which is henceforth assumed to be satisfied. The packing temperature T: 
within the framework of the approximation represented by Eq. (4) is expressed in terms of 
To by the relation 

&o 02Zo (5) T,=To--(I+?) ~ @ ( 1 + ? ) 2 0 T  2 

We will solve Eq. (4) on condition that heat transfer takes place with the surroundings, 
the temperature of which is taken as the temperature zero, i.e., 

h~o + aTo/aR~ = O, R E C, (6) 
where the derivative is calculated normal to the wall and for arbitrary initial and boundary 
conditions 

x 0 = ~ ( X ,  R), T = 0 ,  X > 0 ;  x0=  ~(R, T), X =  0, T > 0 .  (7) 

As an additional condition we require the solution to be bounded when T§ 

We introduce a system of eigenfunctions ~n(R) with eigenvalues Vn satisfying the equa- 
tion 

V ~ AR~p,, (r) = .  ~ (r) (8) 
and the boundary condition (6), and also the expansions 

to = ~ f,~,, ,  p - - . ,  M,,~,,, ~-- ~,~,,~,~, (9)  
n=0 n=0  n = 0  

where  fn  = fn (X,  T) ;  Mn=Mn(X) and ~n = ~n(T) .  The form o f  t h e  e i g e n f u n c t i o n s  i s  d e t e r m i n e d  
by t he  c r o s s - s e c t i o n a l  g e o m e t r y  o f  t h e  c h a n n e l  and t h e  symmetry o f  the  p rob lem ( i . e . ,  t h e  
symmetry of functions p and tp). In particular, in the plane problem ~n are expressed in 
terms of trigonometric functions, and in the axisymmetric case they are expressed in terms 
of Bessel functions. Explicit expressions for ~n and ~n in these cases, and formulas for 
determination of the coefficients M n and @n in (9) can be found in [ii], for instance. 

For functions fn we obtain from (4) and (7)-(9) the problem 

af~ax + a ~  aV~aT~ Avff~, f~ < oo, T ~  oo, 

f~ = M ~ ,  T = O ,  X>O; f~=~r~, X = O ,  T>O. (lO) 

In view of its linearity this problem can naturally be split into two parts, in one of 
which ~n = O, and in the other M n = O, describing, respectively, the effects of the initial 
temperature distribution and perturbations of the temperature in the channel entrance section 
on the temperature field. In this general case the solution of (i0) can be expressed as the 
sum of the solutions of these two special problems. 

For solution of the first problem it is convenient to use the Laplace transformation 
for X. Its solution in images will then take the form 

fn-- fi4, exp - - T  P @ Av'Z' + 7 - -  V " 

COn the  s o l u t i o n  o f  t he  i n i t i a l  s y s t e m  (1) we must  impose i n i t i a l  c o n d i t i o n s  f o r  t he  two 
mean t e m p e r a t u r e s  To and Za. The a p p r o x i m a t e  p rob lem f o r  (2) o r  (4) when t h e s e  two c o n d i -  
t i o n s  a r e  imposed ,  however ,  does  n o t  i n  t h e  g e n e r a l  c a s e  s a t i s f y  t h e  r e q u i r e m e n t  o f  d e c a y  of  
t he  t e m p e r a t u r e  p e r t u r b a t i o n s  w i t h  t ime and o n l y  one o f  them must  be u s e d .  For  i n s t a n c e ,  
i f  a t  t h e  i n i t i a l  t ime  re = z l  = 0 ,  t h e n  from the  a p p r o x i m a t e  p rob lem f o r  Eq. (4) w i t h  i n i t i a l  
c o n d i t i o n  To = 0  we o b t a i n  a s o l u t i o n  i n  which  t h e  v a l u e  o f  T1, g i v e n  by r e l a t i o n  ( 5 ) ,  i s  non-  
z e r o  a t  T = 0. Th i s  d i s c r e p a n c y ,  however  i s  q u i t e  i n s i g n i f i c a n t  i n  t h e  r e g i o n  of  a p p l i c a b i l -  
i t y  of the approximate solutions, i.e., when T >> i. 
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~or solution of the second problem it is convenient also in several cases to use the 

Laplace transformation for X and then solve the problem 

~L dT,~ (p + Av~) i = -  ~ (T), dT z dT 
i = o, T =: o; L < ~ ,  r - +  ~ ,  (12) 

directly. Sometimes it is more convenient to use the Fourier sine transformation for the 
variable T. We then obtain the solution in the form 

[ ( if! I ~ [~=_a_2 exp 'doexD --X o 2 + A v ~ + T ,  sinmT r. _ 2 ,  sin (13) 
o o 

Thus, the obtention of the solutions of the two special problems reduces to determina- 
tion of the original of expression (ii) or to the solution of (12) followed by determination 
of the original or to calculation of the integrals in (13). As a result we obtain a solution 
of the initial problem in the form of a series in (9), each term of which is the sum of the 
solutions of the indicated special problems with a given n. 

We consider first the "washing out" of the initial temperature profile by the flow of 
working fluid, which at the entrance to the channel has zero temperature (which corresponds 
to ~n=0, n=1,2,...). For an arbitrary exponential initial temperature we have Mn=An 
exp(--anX), Mn =An(p +~n) -I and then from (ii) 

i o )Iexp( [n(X, T) o%I)(X,  T; a,0 A,~ exp T --T # 1 erfc T 
2 , 2  

---L-r 1 /  - - ] / X  (Av~--a~ + + ) ) +  exp (T ~ A v : - - a , , +  ~ - )  erfc ( 2 ~ X  + / X  (Av:--a .  + + ) ) }  . (14) 

I t  i s  obvious t h a t  an=  0 corresponds  to the  case of a uniform p r o f i l e .  In  a d d i t i o n ,  i f  the  
d i s t r i b u t i o n  Mn(X) can be r ep resen ted  as the  Laplace t rans form of some func t i on  Sn(*)(z)  " 

(z) M, (X) ~ .- exp (--zX) S~ ~ (z) = dz, (15 ) 
p + z  

0 0 

the  dynamics of deformat ion  of the i n i t i a l  tempera ture  p r o f i l e  w i l l  be c h a r a c t e r i z e d  by the 
following integral: 

[,, (X, T) -- .[ S~')(z) ~ ' )(X,  T; z) dz, (16) 
0 

where func t i on  On (~) id def ined  in  (14).  The c o n d i t i o n s  for  v a l i d i t y  of (16) reduce,  in  
f a c t ,  to the  c o n d i t i o n s  for  e x i s t e n c e  of the i n t e g r a l s  in  (15) and (16), i . e . ,  Eq. (16) i s  
of a very universal nature. 

The presented relations are simplified for a thermally insulated channel [in (6) h = 0] 
with a uniform initial cross-sectional temperature distribution. In this case instead of 
series (9) for To we have expression (14) or (16), in which we put v n = O. 

We now consider the establishment of the temperature field generated by a flow at 
prescribed temperature entering the channel with zero initial temperature (Mn =0, n=l,2,...). 
When the temperature at the entrance varies in accordance with an arbitrary exponential law, 
Cn =Anexp(-anT). After the solution of (12) and conversion to the original, we obtain 

[~(X, T) = ~2)(X, T; a~) = A~exp[--X(Av~ ' a,~(l + a~))] 

x {exp(--a,~T)-- ~ exp(~--)Iexp(--T]//a~(1 +a~)++)  

+ exp T a,, (1 + a,~) -/-~-,. erfc 2.V'X" 

erfc( T (a~(I 1 

- - + - t / x  (.,, + o.,++))]}. 
a n = 0 corresponds to a constant temperature at the entrance. 
of Eqs, (15) and (16). We have 

It is easy to obtain analogs 
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q)n (T) = f exp (--zT) S~ 2) (z) dz, [,, (X, T) =: j S}, ~-> (z) ~(2> (X, T; z) dz, 
0 0 ( 1 8 )  

where  an (2) i s  d e f i n e d  i n  ( 1 7 ) .  For  a t h e r m a l l y  i n s u l a t e d  c h a n n e l  and a u n i f o r m  t e m p e r a -  
t u r e  d i s t r i b u t i o n  a t  t h e  e n t r a n c e ,  To i s  g i v e n  by  e x p r e s s i o n s  (17) and (18) w i t h  Vn= 0. 

Of c o n s i d e r a b l e  i n t e r e s t  ( e s p e c i a l l y  f rom t h e  v i e w p o i n t  o f  r e g u l a t i o n  o f  h e a t  t r a n s f e r  
[1 ,  2 ] )  i s  t h e  r e s p o n s e  o f  t h e  sy s t em to  a s i n g l e  t e m p e r a t u r e  p u l s e  a t  t h e  c h a n n e l  e n t r a n c e .  
P u t t i n g  ~ n ( T ) = A n ~ ( T  -- To) ,  we o b t a i n  f rom (13) t h e  im p u l se  r e s p o n s e  f u n c t i o n  i n  t h e  form 

f,~(X, T; To)_ 2 1#~'( ex!~ [ A ~  , T--T~ X (Av~ ,-? + ) ] _  , _ _{exp] ~ ( T - -  T~ ] - -  exp [ (T 4-4X T~ ]/.j �9 (19) 

This function is invariant relative to a shift of To, which is due to the effect of the 
initial condition at T = 0 on the structure of the solution of the parabolic equation in (i0). 
This solution has physical sense, of course, only when T -- To >> i, i.e., in the calcula- 
tions we must use the following response function: 

A~ exp. X Av~-t- - -  ' ] (20) [,~(X, T)= :n(X, T; O)= 2) z~--X 2 4X l"  

Using s t a n d a r d  methods  and t h e  f o r m a l i s m  of  G r e e n ' s  f u n c t i o n  or  t h e  t heo rem of  c o n v o l u t i o n s  
f o r  i n t e g r a l  t r a n s f o r m s ,  we can  e x p r e s s  t h e  r e s p o n s e  o f  t h e  sy s t em  to  an a r b i t r a r y  p e r t u r b a -  
t i o n  o f  t h e  f l ow  t e m p e r a t u r e  a t  t h e  c h a n n e l  e n t r a n c e  i n  t h e  form o f  an i n t e g r a l ,  whose i n t e -  
grand c o n t a i n s  t h e  q u a n t i t y  ( 2 0 ) .  

I f  i n  (6) h 4  0,  t h e n  even  i n  t h e  c a s e  o f  a s i n g l e  u n i f o r m ,  i . e . ,  i n d e p e n d e n t  o f  R, 
p u l s e  a t  t h e  e n t r a n c e  s e c t i o n  t h e  s e r i e s  (9) f o r  To w i l l  c o n t a i n  t e rms  c o r r e s p o n d i n g  to  
d i f f e r e n t  n,  and A n 4 1 a r e  d e t e r m i n e d  as  t h e  c o e f f i c i e n t s  o f  e x p a n s i o n  o f  t h e  u n i t  f u n c t i o n  
i n  t e rms  o f  a s y s t e m  of  e i g e n f u n c t i o n s  ~n (R) .  krhen h = 0 ,  howeve r ,  t h e  r e s p o n s e  o f  ~o to  a 
p u l s e  a t  t ime  T = 0 i s  e x p r e s s e d  by  Eq. (20) w i t h  Vn = 0, An = l .  

In  a p p l i c a t i o n s  i t  i s  i m p o r t a n t  to  know a l s o  t h e  v a r i a t i o n  o f  t h e  t e m p e r a t u r e  o f  t h e  
walls of the heated channel and the heat flow through the wall, which has been considered 
earlier, in [12, 13], for instance. The wall bemperature can be regarded in a first approxi- 
mation as equal to To when RE C; the value of 3ro/3Rn when R6C, which determines the rate 
of heat exchange with the surroundings, can then be determined directly from condition (6). 

The presented solutions enable us to consider a wide circle of very diverse problems 
of two-phase heat transfer in packed channels. The considered approximate formulation of 
the problem can easily be extended to more complex processes in which the flow of fluid is 
variable, the heat loss from the walls is nonuniform or depends on time, there are internal 
heat sources whose intensity in the general case depends on the temperature or on the con- 
centration of some impurity in the flow, for which the corresponding mass-transfer problem 
must be jointly considered, etc. As an example, we investigate the operation of a periodi- 
cally operating straight-through heat regenerator, which is of great independent interest. 
Possible approximate models of heat regenerators and analytical results for the simplest 
models have been given by Nusselt [14]. 

We consider a regenerator in which there is an alternating flow of hot (temperature 
T*) and cold (zero temperature) fluid. For simplicity, we assume that the velocity and 
physical parameters of the fluid in the heating and cooling periods, and also the lengths 
of these periods, are the same. Extension to the more general case is simple. If the 
initial temperature is zero, i.e., is the same as that of the surroundings, the course of 
heating is determined by the first series in (9); for the images of the coefficients fn 
of this series we have problem (12), in which ~n= T~A , where A n are the coefficients of 

LL 

expansion of the unit function in terms of the complete system of eigenfunctions ~n(R). 
The cooling of the flow during the first cooling period is characterized by expression (ii), 
in which Mn is equal to fn, as it was at the end of the first heating period. In a similar 
way it is easy to investigate problems relating to subsequent heating and cooling periods. 

Of particular importance is the steady periodic operation of the regenerator, where 
the temperature distributions at the same times for each of the heating and cooling periods 
are the same. We will assume that the temperature distribution established at the end of 
the cooling period is such that the coefficients of its expansion in terms of functions 
~n(R) are equal to gn(X), while at the end of the heating period the temperature distribu- 
tion is characterized by the coefficients gn+(X). In this case these quantities play the 
role of Mn in (I0) and (ii). 
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During the next heating period we have 

[ ( • ~] f~(T)=g~exp  --T ] , / p + A v ~ +  4 2 , 

, from the results obtained above, 

~I I(d , 1)] 1 §  1--exp --T , , p + A v ~ +  4 2 (21) 

(the time is measured from the start of the heating period). 

~;(D= g,? exp 
p + A v ~ +  4 , 2 ,  

(the time is  measured from the s t a r t  of the cooling per iod) .  

The condi t ion  for es tabl ishment  of the regime, i . e . ,  the condi t ion  of s t a t i o n a r i t y  
of the l imi t ing  cycles ,  reduces to fu l f i lmen t  of the e q u a l i t i e s  

i~+(AT) = D +, 7:(AT) = g\-, (23) 

where AT is  the dura t ion  of one heat ing or cool ing period.  Solving Eqs. (21)-(23) and 
using the formula for the sum of an i n f i n i t e  geometric progress ion,  we obta in  

{ [ (r  ' ')I/ ~+= A~ 1--exp --AT p + A ~ +  4 2 
P 

• exp --2mAT p + A v ~ :  4 2 ' 

^--' , A 2 1 1 g U = g d  exp --AT p-v vn+ 4 2 " (24) 

During the next cooling period 

(22) 

Converting to originals, we obtain 

g.+ (x) = -~ 

•  f (Av~ + exp(2mATV/A,2  1 

• erfc ~V'X'/mAT + ]///'X (Av~ + + )  ) -- exp (--~)  x 

• [exp (--(2m + 1)AT 

-d~(<++)) 
V/-Av~ + + ) e r f c  ( (2m+ 21/Tu I)AT 

+exp ,(2m + l)Ar V Av~+ 

xe,fc('2~ ( ,))]} 
2 ]/-~ + I / X  Av~ + ~ . 

An (2m +21) AT 

m ~ 0  

){oxp(_,2m+,,~T 

X VrAv~ + +)erfc ((m + 1)AT 
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+exp(2(m+ 1)ATFAv2+ 1) erfc( (m+ 1)ATI/~X + FX (Av~J~ 41----7]}. (25) 
The temperature distributions at the end and beginning of the heating period in the 

established regime are, respectively, 

(X, R) = ~j gn + (X) *n (R), T- (X, R) = ~,] g~- (X) ,~ (R). (26) 
n ~ 0  a~O 

If the regenerator is thermally insulated, T + and T- are the same as the functions in (25), 
with "0n--0. It is also easy to write explicit expressions for the temperature distribution 
at different times and to use them to evaluate the quantities characterizing the rate of 
heat transfer between the hot and cold flows, heat loss through the wall, etc., in relation 
to the flow velocity, duration of the heating and cooling periods, and length of regenerator, 
after which it is easy to optimize the regenerator with respect to these parameters. In 
view of their cumbersome nature the corresponding calculations are not given here. 

Despite the complex form of relations (25), (26), etc., they are expressed in terms of 
known tabulated functions and do not require the laborious calculations involved in numeri- 
cal evaluation of the integrals arising in the solution of the similar problem for system 
(i). In addition, the series in (25) converge fairly rapidly. It can be shown that the 
approximate model considered here allows some simplification of the analysis of generators 
of other types, e.g., countercurrent regenerators. 

In a similar way, approximate solutions of the two problems of two-phase heat transfer, 
given above, have a much simpler form than the solutions of the corresponding problem based 
on system (i). Hence, we can expect considerable simplifications in the analysis of other 
more complex heat-transfer problems in apparatuses containing packings, especially in cases 
where solution (i) cannot be obtained at all for some reason or other. The validity of the 
solutions of (2) or (4) when T >> 1 is convincingly demonstrated in [9], and also follows 
from the general analysis in [i0]. 

NOTATION 

a n , An, coefficients; C, cross-sectional contour of channel; c, heat capacity per unit 
mass; d, density; fn, coefficients of expansion of To in terms of eigenfunctions ~n(R); g~, 
g~, values of fn at start and end of heating period in steady operation of regenerator; h, 
coefficient in condition (6); L, characteristic linear scale of channel cross section; Mn, 
coefficients of expansion of function ~; p, Laplace transform parameter; r, R, dimensional 
and dimensionless transverse coordinates; s(i), functions in (15), (16), and (18); t, T, 
dimensional and dimensionless time; u, flow velocity calculated for total channel cross 
section; x, X, dimensional and dimensionless longitudinal coordinates; at, ar, ~x, time 
scale and length scales in transverse and longitudinal directiQns; B, interphase heat-trans- 
fer coefficients; y, parameter in (3); AT, duration of heating and cooling periods; E, 
mean free cross section of channel or porosity of granular packing; %, A, dimensional and 
dimensionless transverse thermal conductivity; ~, initial temperature distribution; ~n, 
eigenvalues; a(i), functions in (14) and (17); T, mean temperature; T*, temperature of hot 
flow at entrance to channel; T-, ~+, temperature distributions at start and end of heating 
period in steady operation of regenerator; ~, ~n, temperature profile at entrance to channel 
and coefficients of its expansion in terms of ~n(R); ~n, eigenfunctions; m, frequency; The 
subscripts zero and unity denote, respectively, the fluid and the solid packing; A indicates 
the Laplace transform. 
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NONSTEADY FILTRATION OF SATURATED WATER 

VAPOR IN DISPERSE MEDIUM 

V. L. Ganzha and G. I. zhuravskii UDC 532.546:547.912 

Analytic relations are obtained for the calculation of the temperature and pressure 
distribution in a disperse medium, and also the depth of the heated region in the 
filtration of saturated water vapor. 

Questions associated with the investigation of saturated-water-vapor filtration in dis- 
perse media is of particular urgency at present in connection with the prospect of making 
effective use of the method of vapor-heat treatment as a means of increasing the petroleum 
yield of a bed. The main aim of the investigation, of course, is to obtain analytical rela- 
tions allowing the vapor parameters in the course of filtration and its penetration depth 
in the plate to be obtained. 

In most works devoted to the solution of this problem (e.g., [1-4]), integrodifferential 
heat-balance equations are used. However, in ignoring the hydrodynamics of the process, 
this approach can obviously only give satisfactory approximation in thermal calculations 
for very small AT, since it is assumed, in the absence of information on the form of the 
pressure or temperature distribution, that AT = const. 

In [5-8], an attempt was made to use relations obtained on the basis of a system of 
differential equations [9]. However, these equations were derived for the drying of capil- 
lary-porous bodies, and cannot be applied outside the scope of problems of diffnsional- 
filtration transfer at small pressure gradients. 

The physical picture of the problem is reflected more completely and accurately in [i0], 
where a system of equations of nonisothermal multicomponent filtration is given. However, 
its use involves serious mathematical difficulties, and moreover mathematical inaccuracy 
was assumed in deriving the energy equation of the multicomponent flux. 

Thus, as far as is known, relations for the calculation of saturated-vapor filtration 
in a disperse medium which are both sufficiently well-founded and expedient for use are 
not to be found in the literature at present. 
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